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Abstract

A general subsurface crack propagation analysis methodology for the wheel/rail rolling contact fatigue problem is
developed in this paper. A three-dimensional elasto-plastic finite element model is used to calculate stress intensity factors
in wheels, in which a sub-modeling technique is used to achieve both computational efficiency and accuracy. Then the fati-
gue damage in the wheel is calculated using a previously developed mixed-mode fatigue crack propagation model. The
advantages of the proposed methodology are that it can accurately represent the contact stress of complex mechanical
components and can consider the effect of loading non-proportionality. The effects of wheel diameter, vertical loading
amplitude, initial crack size, location and orientation on stress intensity factor range are investigated using the proposed
model. The prediction results of the proposed methodology are compared with in-field observations.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, higher train speeds and increased axle loads have led to larger wheel/rail contact forces.
Also, efforts have been made to optimize wheel and rail design to improve the performance and reduce the
cost. These trends have changed the major wheel rim damage from wear to fatigue [1]. Unlike the slow dete-
rioration process of wear, fatigue causes abrupt fractures in wheels or the tread surface material loss. These
failures may cause damage to rails, damage to train suspensions and, in some cases, serious derailment of
the train.

The fatigue problem of railroad wheels is often referred to as rolling contact fatigue [2], which is caused by
repeated contact stress during the rolling motion. Similar fatigue problems also exist in other mechanical com-
ponents experiencing rolling contact loading, such as gears and bearings. A detailed overview of the rolling
contact problem of railroad wheels was given by Ekberg and Kabo [3]. Different failure modes have been
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Nomenclature

p contact pressure
l friction coefficient
sxy shear stress
syz shear stress
urel relative displacement between the upper crack surface and the lower crack surface
uupper absolute displacements of the upper crack surfaces
ulower absolute displacements of the lower crack surfaces
a crack length
Kmixed,eq equivalent stress intensity factor range under mixed-mode loading
f da

dN

� �
crack growth curve obtained under mode I loading

k1 loading parameters
k2 loading parameters
k3 loading parameters
kH loading parameters
s material parameter related to the material ductility
t�1 shear fatigue limit
f�1 tensile fatigue limit
A, B material parameter
[r] remote stress matrix
[T] transformation matrix from the coordinate system xyz to x 0y 0z 0

(/,h,w) Euler angles
c the angle between maximum normal stress amplitude plane and critical plane
delta K stress intensity factor range
da
dN crack growth rate
DKeff effective stress intensity factor range for mixed-mode loading
R stress ratio
C material parameter in Walker’s model
m material parameter in Walker’s model
f material parameter in Walker’s model
DF applied vertical loading range
Y(a) geometry function considering the effect of crack configuration and boundary conditions
N(a) number of cycle to grow a crack from the initial length a0 to the length of ac
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observed for railroad wheels, such as shattered rim, vertical split rim and thermal cracking [4]. Shattered rim
failures are the result of large subsurface cracks that propagate roughly parallel to the wheel tread surface
[5,6]. Thermal cracking usually breaks off a piece of the wheel tread, while shattered rim can destroy the
wheel’s integrity and thus is more dangerous. The current study focuses on the subsurface crack propagation
(shattered rim) analysis.

There are two major groups of models for subsurface fatigue crack analysis under rolling contact loading.
One is the group of fatigue crack initiation prediction models based on the S–N or e–N curve approach. The
other is the group of fatigue crack propagation prediction models based on fracture mechanics. These two
types of approaches are briefly discussed below.

(1) Fatigue crack initiation models: Bernasconi et al. [7] examined several multiaxial fatigue models by using
Hertz contact theory for the wheel material. Guo and Barkey [8] used a 2D finite element model and a
multiaxial fatigue model developed by Fatemi and Socie [9] for bearing rolling contact fatigue analysis.
Sraml et al. [10] use the Hertz contact theory to calculate the stress response and treat the multiaxial
fatigue problem as a uniaxial fatigue problem. The principal stress/strain component in one direction
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is used for fatigue analysis. Ringsberg [11] developed a semi-analytical approach for stress calculation,
which used 3D finite element analysis but applied the contact pressure based on Hertz theory. The mul-
tiaxial fatigue model is a critical plane-based model which uses the damage parameter proposed by Jiang
and Sehitoglu [12]. Ekberg et al. [13] developed a fatigue life prediction methodology for the wheel/rail
contact fatigue problem, which uses the Hertz contact theory for stress calculation and multiaxial fatigue
model proposed by Dang Van et al. [14].

(2) Fatigue crack propagation models: Guagliano and Vergani [15] proposed a semi-analytical approach for
the analysis of internal cracks in wheels, in which the finite element method with the applied Hertz con-
tact loading is used to calculate the stress intensity factors. A recent study [16] used a three-dimensional
finite element method to calculate the stress intensity factors in hypoid gears. Lansler and Kabo [17] used
a 2D finite element model for the analysis of subsurface crack face displacements in railway wheels. Bog-
dański and Trajer [18] used a plane strain finite element model and the applied Hertz contact pressure for
the analysis of stress intensity range in rolling contact fatigue. Glodež and Ren [19] combined a finite
element analysis with applied Hertz contact pressure and a mixed-mode crack growth model based on
strain energy release rate for the fatigue crack propagation analysis. Cho and Komvopoulos [20] and
Komvopoulos [21] used a finite element analysis with applied Hertz contact pressure and a mixed-mode
crack propagation model based on the maximum stress intensity factor in mode II.

Most of the existing rolling contact fatigue models use a simplified stress calculation technique, such as
Hertz analytical solution or simplified finite element analysis with applied Hertz contact pressure. Due to
the complex geometry of the wheel/rail contact area, it is more appropriate to use a 3D finite element method
to calculate stress response in the mechanical components. The Hertzian theory assumes that the contact area
is small compared to body dimension and surface curvature. It has been shown that the Hertz contact theory is
not appropriate when the contact area between wheel and rail is near the wheel flange, where the surface cur-
vature is comparable to the contact area [4]. Liu et al. [4] proposed a finite element computational methodol-
ogy to calculate the complex 3D stress histories of wheel/rail contact. The stress histories were used for fatigue
crack initiation life prediction using the multiaxial fatigue theory developed by Liu and Mahadevan [22].

Most of the existing studies of subsurface crack propagation ignore the non-proportionality of the stress
intensity factors. Some of them used a simplified mixed-mode crack propagation model, such as strain energy
release rate model [19]. Feng et al. [23] observed different crack growth behavior under proportional and non-
proportional loading paths with identical loading magnitude and stated that the models based on the strain
energy release rate cannot represent this trend. In Section 2 of this paper, it is shown that the subsurface crack
intensity factor histories are non-proportional under rolling contact conditions. A mixed-mode crack propa-
gation model, which can consider the effect of loading non-proportionality, is required for the crack propa-
gation and fatigue life prediction for railroad wheels under this condition.

A general methodology for subsurface fatigue crack propagation analysis of railroad wheels is proposed in
this paper. It combines a 3D finite element model for the wheel/rail contact analysis and a mixed-mode crack
propagation model previously developed by Liu and Mahadevan [24]. The model predictions are compared
with field observations of shattered rim failure of railroad wheels. Parametric studies are performed using
the proposed methodology for different vertical loadings, wheel diameters, crack geometries and crack face
frictions.

2. Finite element modeling of subsurface crack in wheel/rail contact

Liu et al. [4] proposed a finite element computational methodology for rolling contact analysis of railroad
wheels. It has several advantages compared with previous analytical and numerical approaches. First, it is a
realistic 3D finite element model and can accurately calculate the 3D stress response in the contact region.
Second, it includes both material and geometric non-linearity, i.e. elasto-plastic material behavior and contact
stress analysis. It can be used to simulate large and complex wheel motions, such as rotation, sliding, hunting
movement and even dynamic impact response. Finally, through sub-modeling techniques, the proposed model
is made efficient in computing and hardware requirements. Liu et al. [4] used the model for fatigue crack
initiation analysis. In this section, the previous developed finite element model is extended for subsurface crack



Fig. 1. Finite element modeling of wheel/rail contact with subsurface crack: (a) full model, (b) sub-model, (c) crack and (d) crack shape.
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propagation analysis. A brief description of the developed finite element computational methodology is given
below, followed by the modification to include a subsurface crack into the wheel.

First, use the available profiles to build the geometry model of the wheel and a piece of rail. This model is
called the full model as shown in Fig. 1a. The rail length equals the length between two sleepers. Fixed bound-
ary conditions are applied to the two ends of the rail. Different 3D element sizes are used in the full model
(SOLID 45 in ANSYS). Due to the non-linearity of contact analysis, contact surface need fine mesh for accu-
rate stress analysis. In the current study, a finer mesh (the average element length is about 3 mm) is used near
the contact region, i.e. near wheel tread surface and rail head surface. At the wheel center, a pilot point is con-
nected to the wheel using rigid link elements. All the external loading and boundary conditions of the wheel
are applied on the pilot point. These loading and boundary conditions can be obtained through field measure-
ments or from numerical simulation of the track system motion analysis. The wheel/rail contact surfaces and
two crack faces are modeled as surface-to-surface contact elements. The augmented Lagrangian method [25] is
used for contact simulation. The friction model is the Coulomb friction model. The Coulomb friction model
defines an equivalent shear stress s, which is proportional to the contact pressure p and the friction coefficient
l. For the wheel/rail contact surface, the friction coefficient (l) is determined to be 0.3 based on our in-field
data from railroad industries, which has been published in our recent study [4]. The material properties of the
wheel and rail as described using a linear kinematic hardening model in ANSYS. No isotropic hardening is
included in the current model.

Next, quasi-static analysis is performed for the full model and the results for each step are stored. Then the
geometry model of the contact region is cut out to create a sub-model as shown in Fig. 1b. The size of the sub-
model depends on the analysis objective and also on the wheel motion simulated. The same types of elements
as those in the full model analysis are used to mesh the sub-model. A very fine mesh is used in the contact area
and to some depth under the contact surface. The results of the full model are interpolated on the cutting edge
of the sub-model corresponding to different calculation steps, and the interpolation results are applied as
boundary conditions to the sub-model.

An elliptical crack is built into the sub-model, as shown in Fig. 1b. The crack location and orientation are
determined from a previous numerical prediction of the initial fatigue crack profile [4], which is consistent with
field observations of subsurface crack in railroad wheels. The major axis is along the track direction and the
minor axis is perpendicular to the track direction. Based on the field observations of the initial fatigue crack
profile, the aspect ratio of the elliptical crack is assumed to be 1.5. The subsurface crack is modeled as two
contact surfaces to prevent the surface penetration of the subsurface crack. The Coulomb friction model is
used similar to the contact surface between rail and wheel. The friction coefficients between two crack faces
are hard to measure and are assumed to vary from 0 to 0.5. Their effects are studied by parametric studies
later in this paper. Since our focus is the four crack tips located at the end of major axis and minor axis
for the fatigue life prediction, the mesh around the four crack tips are very fine mesh (the average element
length is about 0.07 mm) and meshes near other crack front are relatively coarse mesh (the average element
length is about 0.5 mm).
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In sub-modeling, the results from the sub-model need to be verified to make sure that the cut boundaries are
far enough from the stress concentration (contact region and crack tip in this problem). The results in the sub-
model are obtained using a fine mesh. They need not agree with the results from coarse mesh full model. The
disagreement can be caused not only by mesh refinement differences, but also due to geometric and material
non-linearities around the contact region. The cutting edge results from the sub-model analysis are compared
with those results in the full model. If the difference is small enough, output the results in sub-model for fatigue
crack propagation analysis. Otherwise, change the sub-model and repeat the previous steps.

The finite element models of the full model, sub-model and crack are shown in Fig. 1. The wheel profile is
chosen according to the AAR standard [26] wide flange contour. The wheel diameter is 0.914 m (36 in.). From
our collected field observations, crack usually occurs at depth 5–10 mm with 20� inclination. The parameter
study in our previous paper [4] also shows that cracks initiates at a depth of 5–7 mm and 20� direction. In the
current study, the subsurface crack is assumed to be 6 mm below the tread surface with an inclination angle of
20�. The 20� inclination is the angle between the minor axis of the crack and the XZ-plane (Fig. 1). The semi-
minor axis is 5 mm. The vertical load applied on the wheel is assumed to be the maximum design load, which is
146.2 kN (32,875 lb). The material properties of the rail and wheel are assumed to be same (yielding
strength = 500 MPa; Young’s Modulus = 205 GPa; Tangent modulus = 4000 MPa; Friction coefficient =
0.3). The rail length is 600 mm, which is typically the length between two sleepers. In the current study, the
initial contact point is assumed to occur at the railhead center and wheel tread center.

The static load analysis of the wheel/rail contact is performed first. The results of the sub-model are shown
in Figs. 2 and 3. Fig. 2 shows the von Mises stresses from two different section views. Fig. 3 shows two in-plane
Fig. 2. von Mises stress distribution of wheel/rail contact with subsurface crack (unit: MPa): (a) front section view and (b) left section
view.
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shear stresses (sxy and syz) from two different section views. From Fig. 2, it is found that the maximum von
Mises stress occurs at some depth below the tread surface. The stress decreases quickly as the depth increases.
The maximum von Mises stress also occurs around the crack tip, which is caused by the stress concentration
near the crack tip. From Fig. 3, a butterfly pattern of the shear stress syz is observed. The maximum value
occurs at the crack tip. Figs. 2 and 3 show that the high stress only occurs within a small region of the contact
location. The stress in the other parts of the model is almost zero. This indicates that only a small portion of
the motion simulation is needed because the stress far away from the contact location is negligible.

After performing the static analysis, the wheel rotation on the rail, which is the normal motion mode of the
wheel, is simulated. This is done by applying the proper boundary conditions on the pilot node in the full
model. For 3D elasto-plastic contact analysis, it is usually very time-consuming, even using the sub-modeling
techniques. It is important to use the steady-state stress response within the mechanical components for the
fatigue life prediction. We followed the method described in Liu et al. [4] to balance the computational effort
and analysis accuracy for the current 3D finite element model. The stress responses after two cycles are
assumed to be stabilized values and used for fatigue life prediction.

The current study focuses on subsurface crack behavior under rolling contact loading. The crack deforma-
tion behavior is studied first. A relative displacement is defined same as Lansler and Kabo [17]
u ðI; II; IIIÞ ¼ u ðI; II; IIIÞ � u ðI; II; IIIÞ ð1Þ

Fig. 3
(b) dis
rel upper lower
. In-plane shear stress distribution of wheel/rail contact with subsurface crack (unit: MPa): (a) distribution of sxy and
tribution of syz.
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where urel is the relative displacement between the upper crack surface and the lower crack surface. uupper and
ulower are the absolute displacements of the upper and lower crack surfaces, respectively. (I, II, III) indicates
the three modes of crack deformation, i.e. mode I, mode II and mode III, respectively.

The maximum relative displacements along the major and minor axes are shown in Fig. 4. Due to the pos-
sible non-proportionality of the stress intensity histories in the three modes, these maximum values may not
occur simultaneously. Fig. 4 shows that both mode II and mode III components are significant and must be
included in the fatigue crack propagation analysis. During rolling contact, the crack surfaces are closed and
the mode I component is not significant, which indicates that the shattered rim failure is driven by shear stress.
Compared with the larger mode II and mode III displacements, mode I displacement is small and its effect is
ignored in the current study.

The mode II and III stress intensity factor (SIF) histories of crack tips at the major axis and the minor axis
(points 1, 2 and 4 in Fig. 1d) during the second revolution of the wheel rotation are shown in Fig. 5. The x-axis
does not indicate real time and is the time step in FE analysis during the simulation of wheel rotating. The
incremental rotating angles is 0.75� per step. Fig. 5 shows that the SIF in the wheel under rolling contact con-
dition is not proportional, which indicates that the maximum SIFs in mode II and mode III do not occur
simultaneously.

The FEA results only show very small residual stresses at these two locations (non-zero SIF values at the
beginning and end of the calculation in Fig. 5). We checked the plastic deformation in the FEA analysis and
found that the plastic deformation in the current analysis is not very large. The maximum plastic strain along
the major crack axis (points 1 and 3) is less than 0.01%. The maximum plastic strain along the minor crack axis
(points 2 and 4) is larger but is less than 0.1%. We found that the residual stress is small compared to the
applied stress amplitude and its effects are assumed to be negligible in the current study.
3. Mixed-mode fatigue crack propagation model

As shown in Section 2, the subsurface crack in railroad wheels experiences non-proportional mixed-mode
loading during rolling contact conditions. Liu and Mahadevan [24] proposed a method for mixed-mode
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Fig. 4. Relative crack surface displacement: (a) major axis and (b) minor axis.
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fatigue crack propagation analysis and the model is used in this paper for rolling contact fatigue analysis of
railroad wheels. Only a brief description of the model and the results are shown here. A detailed derivation
and explanation of the model can be found in [24].

Liu and Mahadevan [24] examined several available models for mixed-mode fatigue crack propagation and
found that most of the available models are only applicable to a limited range of materials (e.g. brittle or duc-
tile metals) and to proportional loadings. The available mixed-mode fatigue crack propagation model is not
appropriate for rolling contact fatigue analysis as railroad wheels experience non-proportional cyclic loadings
under rolling contact. A previously developed critical plane-based multiaxial fatigue model [22] has been
shown to have no limitations with respect to material properties and loading paths. Different from earlier crit-
ical plane-based models, the critical plane in [22] is explicitly related to the applied loading and the material’s
ductility. The plane experiencing maximum normal stress amplitude is first identified. The angle (c) between
the critical plane and the maximum normal stress amplitude plane depends on different materials. For brittle
materials, the critical plane is close to the maximum normal stress amplitude plane. For ductile materials, the
critical plane is close to the maximum shear stress amplitude plane. Thus this model can automatically adapt
for different failure modes, i.e. tensile or shear dominated failure. The model is load path-dependent since dif-
ferent loading paths result in different critical plane orientations and thus different fatigue life prediction.
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The developed multiaxial fatigue model can be extended to fracture mechanics-based fatigue crack propa-
gation analysis using the Kitagawa–Takahashi diagram [27]. According to the Kitagawa–Takahashi diagram,
the fatigue limit can be expressed using the fatigue crack threshold stress intensity factor and a fictional crack
length a. The crack length a represents the intersection of the smooth specimen fatigue limit and the LEFM
(linear elastic fracture mechanics) fatigue crack threshold stress intensity factor. One of the important advan-
tages of the Kitagawa–Takahashi diagram is that it links the fatigue behavior of cracked and non-cracked
material together, which makes it possible to extend a classical fatigue limit criterion to be a fracture mechan-
ics-based fatigue crack threshold criterion.

Liu and Mahadevan [24] developed a mixed-mode fatigue crack threshold criterion based on the critical
plane-based multiaxial fatigue limit criteria [22] and the Kitagawa–Takahashi diagram [27]. After developing
the fatigue crack threshold criterion, the methodology for fatigue crack growth rate prediction is relatively easy.
The fatigue crack threshold stress intensity factor range is often related to the stress intensity factor range at a
very low crack growth rate (da/dN < 10�8–10�7 mm/cycle). For prediction corresponding to an arbitrary crack
growth rate da/dN, the fatigue crack threshold stress intensity factors range may be replaced by the stress inten-
sity factor coefficients at the specific crack growth rate. Then the mixed-mode fatigue crack threshold criterion
can be used for fatigue crack propagation analysis. The general crack propagation equation is expressed as [24]
Kmixed;eq ¼
1

B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1Þ2 þ

k2

s

� �2

þ k3

s

� �2

þ A
kH

s

� �2
s

¼ f
da
dN

� �
ð2Þ
where Kmixed,eq is the equivalent stress intensity factor range under mixed-mode loading. f da
dN

� �
is the crack

growth curve obtained under mode I loading. k1, k2, k3 and kH are the loading parameters with the same unit
as the stress intensity factor range. They are defined as remote stress range multiplying

ffiffiffiffiffiffi
pa
p

. The details about

the calculation of these parameters can be found in [24]. The material parameter s ¼ t�1

f�1
is related to the mate-

rial ductility and affects the critical plane orientation. a is the half length of the crack. The subscripts 1, 2, 3
indicate the directions of the stress amplitude as shown in Fig. 6. The superscript H indicates the hydrostatic
stress related term. s is the ratio of mode II and mode I stress intensity factors under a specific crack growth
rate (da/dN). A and B are material parameters and are listed in Table 1.

Under general three-dimensional non-proportional loadings, a numerical search algorithm is required to
identify the critical plane. An efficient procedure similar to our previous method [4] is used in this paper
and is described as below.

Consider the stress transformation equation
½r�x0y0z0 ¼ ½T �½r�xyz½T �
T ð3Þ
where [r] is the remote stress matrix, subscripts xyz and x 0y 0z 0 refers to the two coordinate systems (Fig. 6). [T]
is the transformation matrix from the coordinate system xyz to x 0y 0z 0. [T] consists of nine direction cosines, in
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Fig. 6. Schematic illustration of stress components on the critical plane.



Table 1
Material parameters for fatigue crack propagation prediction

Material property s ¼ t�1

f�1

6 1 s ¼ t�1

f�1

> 1

c cosð2cÞ ¼ �2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 4ð1=s2 � 3Þð5� 1=s2 � 4s2Þ

p
2ð5� 1=s2 � 4s2Þ c = 0

A A = 0 A = 9(s2 � 1)

B
B ¼ ½cos2ð2cÞs2 þ sin2ð2cÞ�

1
2

B = s
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which only three of them are independent because of the orthogonality conditions. For convenience in numer-
ical calculation, [T] matrix is described using Euler angles (/,h,w) which represent three counterclockwise
rotations following the so-called x-convention definition [28]. If the Euler angles are given, the transformation
matrix [T] can be written as
½T � ¼
cwc/ � chs/sw cws/ þ chc/cw swsh

�swc/ � chs/cw �sws/ þ chc/cw cwsh

shs/ �shc/ ch

2
64

3
75 ð4Þ
where c and s correspond to cosine and sine function, subscripts represent the arguments of such functions.
The general ranges for Euler angles (/,h,w) are [0, 2p], [0,p] and [0, 2p], respectively. However, because we
only calculate the stress amplitude along one direction, no difference is made if the direction is reversed.
The Euler angle ranges can be reduced to [0,p] for all three angle parameters(/,h,w). Furthermore, if we
rotate the coordinate system along any original axis by p/2, the stress matrix components are same except
in a different arrangement. During the calculation, we reduce the Euler angle ranges to [0,p/2] for all three
angle parameters (/,h,w) and search for all three direction stress amplitudes by angle increments of 2�.
The normal vector of maximum principal stress amplitude plane is named as 1 0. On the plane perpendicular
to 1 0, we search for the maximum shear stress amplitude by rotating the coordinate system about 1 0 axis by
angle increments of 2�. The vector of the maximum shear stress amplitude direction on the plane is named as
2 0. 1 0, 2 0 and 3 0 (perpendicular to both 1 0, 2 0) can be treated as a new orthogonal coordinate system (Fig. 6).
After obtaining the new O1 02 03 0 coordinate system, we can calculate the critical plane based on Table 1.
Rotate O1 02 03 0 about 3 0 axis by an angle of c� to be the new coordinate system O123 (Fig. 6). The plane
O23 is the critical plane. Once the critical plane is identified, Eq. (2) together with the material parameters
defined in Table 1 are used for fatigue crack propagation rate prediction under general mixed-mode loading.

As shown in Liu and Mahadevan [22], the ratio of mode II and mode I fatigue crack threshold stress inten-
sity factors s relates to different material failure mechanisms. A larger value of s (s > 1) indicates tensile dom-
inated failure and a smaller value of s ðs ¼ 1ffiffi

3
p Þ indicates shear dominated failure. If the value of s is known, the

proposed model can automatically adapt for different failure mechanisms.
The stress intensity factors history obtained from finite element analysis are used to calculate the stress

intensity factor range (delta K) for crack propagation analysis. The mixed-mode crack propagation model
is used to calculate the equivalent delta K in mixed-mode loading and crack propagation profile in railroad
wheels. Several different models with different initial crack sizes are analyzed (as shown in the fourth section
of parametric study) and the relationship between crack size and delta K is used for fatigue life prediction. The
uniaxial fatigue crack propagation curve is reported by Kuna et al. [29] for a ductile wheel iron. The pure tor-
sional fatigue crack propagation curve is not reported in this study. The value of the ratio s is assumed to be
0.6, which is typical for ductile metals [22,24]. The stress ratio effect is included in the crack propagation using
the well-known Walker [30] model. The subsurface crack propagation studied in this paper is shear dominated
(mode II and mode III). In our mixed-mode crack growth mode, all modes of SIFs are transformed to be an
equivalent SIF and correlate with material’s mode I crack growth curve for life prediction. For mode II and
mode III SIFs, their stress ratio is either 0 or a finite negative value close to �1 depending on their locations
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(see Fig. 4). Thus, the stress ratio of transformed equivalent SIF is also in the range of 0 and a finite negative
value. Walker’s model is applicable in this regard. The general crack propagation function is expressed as
Fig. 7
(b) nu
da
dN
¼ C

DKeff

ð1� RÞf

 !m

ð5Þ
where da
dN is the crack growth rate. DKeff is the effective stress intensity factor range for mixed-mode loading.

For uniaxial fatigue loading, DKeff is the mode I stress intensity factor range. R is the stress ratio, and C,
m and f are material parameters. For the data reported by Kuna et al. [29], C, m and f are determined by
regression analysis as 5.8e�9, 2.95 and 1, respectively.

The equivalent mixed-mode delta K can be expressed as a function of applied loading and crack length as
DKeff ¼ DF
ffiffiffiffiffiffi
pa
p

Y ðaÞ ð6Þ
where DF is the applied vertical loading range. Y(a) is a geometry function considering the effect of crack con-
figuration and boundary conditions, which is calibrated using the finite element results. It should be noted that
Eq. (6) is valid if friction is constant or friction effect is small enough to be ignored. In the parametric studies in
this paper, we have shown that friction effects are not significant under the current conditions and Eq. (6) can
be used. Substituting Eq. (6) into Eq. (5), the fatigue life is expressed as
NðaÞ ¼ 1

CðDF Þm
Z ac

a0

ð1� RÞfm daffiffiffiffiffiffi
pa
p

Y ðaÞð Þm
ð7Þ
where N(a) is the number of cycle to grow a crack from the initial length a0 to the length of ac.
In the current study, the crack shape is assumed to be controlled by four points on the crack front (points

1–4 in Fig. 1d). The crack front profile is approximated using an elliptical curve. The crack growths along the
major and minor axes are calculated using the proposed method. The crack front contours at different num-
bers of cycles are shown in Fig. 7. The increment of number of cycles between each contour is 1.5 · 106. A
couple of field observations of the crack are also shown for comparison. Notice that the current analysis is
deterministic and uses the constant maximum design loading for wheels. Thus the current comparison is only
. Crack shape comparison between numerical prediction and field observation: (a) field observations of crack shape and
merical prediction and field observation.
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qualitative. A quantitative life prediction comparison between the numerical simulation and field observations
must include variability in loading spectra, material properties and structural details. It has been found that
the scatter in time to shattered rim failure is large and that a probabilistic fatigue life prediction methodology
is more appropriate for railroad wheels [31].

It is seen in Fig. 7 that the numerical prediction of the crack shape agrees very well with the field observa-
tion. The early stage crack propagation is in a circular configuration, which shows almost equal crack prop-
agation in both minor and major axis directions. Then the crack propagates in an elliptical manner, which is
mainly along the major axis direction (track direction). Both numerical prediction and field observations show
a compressed contour in the minor axis direction and extruded contour in the major axis direction.
4. Parametric study

In this section, the influence of several factors on the fatigue damage of the wheels is studied, using the
developed methodology described above. These factors are wheel diameter, vertical loading, crack length,
crack orientation, crack depth and crack face friction coefficient. All other parameters are according to the
[32]. The details about the parametric study are shown below.

The diameter of the wheel will affect the fatigue damage. One simple explanation is that the radius of the
wheel will affect the internal stress in the wheel according to the Hertz theory. However, for non-linear contact
analysis and multiaxial fatigue analysis, the relationship between fatigue life and wheel diameter needs to be
studied more carefully. A set of numerical simulations of wheels with different diameters, from 0.711 m (28 in.)
to 0.965 m (38 in.) [26], are used. The vertical loading uses the maximum design load for 0.914 m (36 in.) wheel
[26]. The equivalent mixed-mode stress intensity factor ranges for different wheel sizes are shown in Fig. 8.
From Fig. 8, it is seen that the equivalent mixed-mode stress intensity factor ranges decreases as the wheel
diameter increases. It is interesting to notice that the mixed-mode SIF range exhibits a local maximum for
the 0.914 m (36 in.) wheel, which indicates larger fatigue damage for this type of wheel. This phenomenon
has also been observed by Liu et al. [4] and Ekberg [33] using classical S–N curve-based fatigue analysis.

The equivalent SIFs for the 0.914 m (36 in.) wheel under different vertical loads (58.5 kN, 102.3 kN,
146.2 kN, 175.4 kN and 219.3 kN) are calculated and shown in Fig. 9. The equivalent SIF increases as the
vertical load increases almost linearly. For different points at the crack front, the slopes change slightly.

The effects of different crack lengths are shown in Fig. 10. A 0.914 m (36 in.) railroad wheel under 146.2 kN
vertical loading with different semi-minor axis length (1 mm, 3 mm, 5 mm, 10 mm and 15 mm) are calculated.
Different behaviors are observed for the SIF along the major axis and at the minor axis.

At point 1 on the major axis (see Fig. 1d), the SIF range increases as the crack length increases. The crack
length is defined as the semi-minor axis length of the crack. For relatively short cracks, the increase is signi-
ficant. For long cracks, the increase is small. The reason is that the high stress only occurs within a small
region near the contact location. The stress in other parts of the wheel is almost zero at a certain time instant.
When the crack is long enough to extend beyond the stressed region, the crack beyond the stressed region has
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little effect on the stress field around the crack tip and the SIF. The long crack experiences almost the same SIF
range during one evolution of the wheel.

At points 2 and 4 on the minor axis (see Figs. 1d and 11), the SIF range does not change monotonically as
the crack length increases. For short cracks, the SIF increases as the crack length increases. For long cracks,
the SIF decreases as the crack length increases. The reason is that long cracks extend beyond the stressed
region near the contact location and the crack tip experiences less stress compared with the case when the
crack tip is within the stressed region. This is the reason the crack contour is compressed along the minor axis
in Fig. 7.

A railroad wheel with diameter 0.914 m (36 in.) under 146.2 kN vertical loading with different crack orien-
tations (0�, 10�, 20� and 30�) is analyzed. The SIFs for different crack orientations are shown in Fig. 11. From
Fig. 11, the SIF changes slightly with respect to the crack orientation. For points 1 and 4, the SIF experiences
a local maximum between 20� and 30�. This possibly explains why different cracks observed in field show sim-
ilar orientations, about 20� to the tread surface.

A railroad wheel with diameter 0.914 m (36 in.) under 146.2 kN vertical loading with different crack depths
(3 mm, 4 mm, 5 mm, 6 mm, 7 mm and 8 mm below the tread surface) is analyzed. The SIF ranges of different
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crack depths are shown in Fig. 12. From Fig. 12, the SIF does not change monotonically with respect to dif-
ferent crack depths. The SIF experiences a local maximum around a depth of about 6–7 mm. According to the
field observation we collected, subsurface cracks usually initiates at the depth between 5 mm and 10 mm. After
initiation, cracks usually propagate parallel to the wheel tread surface at this depth. In the field observations,
cracks can deviate to a depth of some 20 mm. However, the growth deviating to the vertical direction is not
considered in this study.

A railroad wheel with diameter 0.914 m (36 in.) under 146.2 kN vertical loading with different crack face
friction coefficients (0, 0.1, 0.2, 0.3, 0.4 and 0.5) is analyzed. The SIF values for different crack face friction
coefficients are shown in Fig. 13. From Fig. 13, the crack face friction coefficient has little effect on the SIF
range and its effect can be ignored under the investigated situations. This result is somewhat surprising and
we expected the friction effects to be significant before we performed the simulation. However, the simulation
results show that the friction effect is not significant under the current conditions. The reasons for this phe-
nomenon can be explained from the following three aspects. (1) Due to the high stress gradient under contact
conditions, the normal stress below the surface decreases quickly. This has been discussed in our previous
study [4] for railroad wheels. According to the Coulomb friction model employed in this research, the effect
of friction is smaller for a subsurface crack compared to a surface crack. (2) The maximum normal stress
and shear stress are not proportional to each other under rolling contact loading, which means they do not
achieve maxima at the same time instant (see Fig. 8 in [4]). For the current subsurface fatigue crack problem,
the delta K depends on the applied maximum shear stress (mode II/III) and the friction stress at the time
when the shear stress achieves maxima. The non-proportionality of the normal and shear stress reduces the
effect of the friction stress.

5. Conclusion

A general subsurface fatigue crack propagation model under rolling contact conditions of railroad wheels is
developed in this paper, which combines a 3D finite element computational method and a previously devel-
oped mixed-mode crack propagation model. The non-linear finite element analysis is used for stress intensity
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factor computation. A numerical example is implemented and compared with field observations of the failure
pattern. The effects of several parameters, namely wheel diameter, vertical loading, crack length, crack orien-
tation, crack depth and crack face friction, on the equivalent stress intensity in railroad wheels are studied
using the proposed model.

Several conclusions can be drawn under the investigated conditions in the current study:

(1) The finite element results show that the stress intensity factor histories of an embedded subsurface crack
in railroad wheels under rolling contact conditions are not proportional to each other, which requires
that the fatigue analysis must be performed using a fatigue model capable of non-proportional loading.

(2) For the subsurface crack under rolling contact condition, the mode I stress intensity factor is not signi-
ficant compared with the mode II and mode III stress intensity factors as the material is under overall
compressive loading. Both mode II and mode III components are significant and should be included in
the fatigue analysis, which indicates a 2D model is not appropriate for railroad wheels under the current
conditions.

(3) Both field observations and numerical predictions show that the subsurface crack propagates in an
‘‘annular ring’’ pattern. The early stage crack propagation is in a circular configuration, which shows
almost equal crack propagation in both axle and track directions. Then the crack propagates in an ellip-
tical manner, which is mainly along the track direction. Both numerical prediction and field observations
show a compressed contour in the minor axis direction and extruded contour in the major axis direction.

(4) Parametric study shows that the vertical loading, crack length, wheel diameter, crack depth and crack
orientation have relatively significant effects on the subsurface stress intensity factor ranges. The effect
of the friction coefficient between the two crack surfaces is not significant in the current study.

The proposed methodology for rolling contact fatigue analysis offers several advantages compared to most
existing models: (1) it employs a 3D elasto-plastic finite element analysis, which represents realistic wheel and
rail profiles and gives accurate stress response under rolling contact condition. This is especially useful when
the contact conditions cannot satisfy the assumptions of analytical Hertz contact theory; (2) it uses a sub-
modeling technique to reduce the computational cost significantly. This characteristic is very useful for future
probabilistic analysis to include various uncertainties, which requires many FE analyses to study the effects of
random input variables; (3) it uses a mixed-mode crack growth model, which is capable of non-proportional
cyclic loadings. As shown in this paper, the subsurface crack is under non-proportional loading conditions and
requires such a model for fatigue life prediction.

This paper focused on deterministic mechanic modeling of subsurface crack propagation. For the life pre-
diction of railroad wheels under realistic service conditions, a probabilistic approach considering variabilities
in loading spectra, material properties and structural details is required and needs further study. Also, other
effects influencing the shattered rim failure, such as manufacturing process parameters, residual stress and
brake thermal loading need to be investigated in the future.
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